де A^c і W^a – відповідно зольність і волога проби, %.

Нами проаналізовано вугілля газове жирне і коксове, яке відібрано з шахт Львівсько-Волинського басейну, а також з свердловини на Тяглівському родовищі і Любельській площі марок Ж і К. Залишкова метаноносність вугілля наступна:

газове -3-4 м³/т г.м. (12 проб) жирне -4-5 м³/т г.м. (8 проб) коксове -5-8 м³/т г.м. (5 проб)

Таким чином більша частина газів, що поступають з вугільних пластів в гірничі виробки, в природних умовах не можуть бути в повному розумінні газами, тому що в сорбованому стані вони не підлягають газовим законам, і тільки ті з них, що у вугільному пласті знаходяться у вільному стані, є такими. В сорбованому стані гази не можуть реалізувати внутрішню енергію, доки не перейдуть у вільну фазу, а для цього необхідно, щоб тиск газу знизився, або появилась би можливість роздробити кам'яне вугілля, що насичене газами. В нашому експерименті якраз підтверджується, що при зниженні тиску і подрібненні вугілля виділяється газ. Залишкова метаноємність по ступеню метаморфізму у Львівсько-Волинському басейні зростає від газового до коксового.

Резюме: При зниженні тиску і подрібненні кам'яного вугілля виділяється газ.

СПИСОК ЛІТЕРАТУРИ

1. Эттингер И.Л. Газоемкость ископаемых углей. "Недра", М., 1966.

УДК 622.243.051

А.А. Кожевников, В.Ф. Сирик, А.К. Судаков, НГУ Украины, г. Днепропетровск, И.И. Мартыненко, Министерство экологии и природных ресурсов Украины, г. Киев

ТЕХНИЧЕСКИЕ СРЕДСТВА СОЗДАНИЯ ИМПУЛЬСНОЙ ПРОМЫВКИ ЗАБОЯ

У статті розглянуто технічні засоби для створення імпульсного промивання свердловини, яка застосовується для інтенсифікації процесу руйнування міцних гірських порід.

TECHNICAL FACILITIES OF MAKING A PULSED WASHING DRILLING FACE

In the article the means for creation of pulse washdown are reviewed, which one is applied to intensification of destruction process of rocks on a bottom of a borehole.

Для интенсификации процесса разрушения крепких горных пород используется тепло, образующееся при трении материала матрицы алмазной буровой коронкой о горную породу — тепломеханический способ бурения [1]. Достигается это за счет уменьшения подачи промывочной жидкости, увеличения размеров промывочных каналов и т.п. Одним из простых и надежных способов создания термомеханического фактора является создание нестационарного потока промывочной жидкости на забое скважины [2]. В национальной горной академии Украины проведено опытное бурение серийными алмазными коронками с импульсной промывкой, создаваемой трехплунжерным насосом НБ5-320/100 путем соединения двух плунжеров. Подача жидкости насосом составляла 0,5 длительности цикла двойного хода, вторая половина цикла — пауза, без движения жидкости во время всасывания жидкости в полость насоса плунжером при холостом ходе. Результаты опытного бурения приведены в табл. 1.

Таблица 1 Результаты стендовых исследований влияния переменной (пульсирующей) промывки на механическую скорость бурения

	Тип корон- ки	Расход жидкости		Режим бурения		Скорость
NºNº		дм ³ /мин	характер	осевая на-	частота	бурения,
			подачи	грузка, кН	вращения	см/мин
1	01А3-76ЖМ	70	перемен.		343	3,02
2	-//-	70	перемен.	7	343	2,07
3	01A3-76	70	перемен.	7	343	1,36
4	-//-	70	постоян.	7	343	0,51
5	01A3-59	70	перемен.	7	237	1,23
6	-//-	70	постоян.	7	237	0,58
7	-//-	70	перемен.	7	237	0,99
8	-//-	70	постоян.	7	237	0,48

Из таблицы видно, что механическая скорость алмазного бурения при импульсной промывке в 1,5-2 раза выше, чем при непрерывной промывке забоя.

В НГА Украины разработаны технические средства для создания импульсной промывки забоя скважины, располагающиеся над колонковой трубой:

- пульсатор с резиновой оболочкой (рис. 1, a);
- пульсатор клапанного типа (рис. 1, б);
- прерыватель потока с турбиной (рис. 1, в).

Работа клапанного пульсатора осуществляется путем периодического открывания клапана 4, на котором закреплена упругая подкладка 3, и остановки жидкости над клапаном за счет поджатой пружины 6, располагающейся на стержне 5, в котором помещается хвостовик клапана 4; нижняя часть стержня 5 имеет резьбу, которая дает возможность регулировать силу прижатия клапана к торцу переходника 1. Импульсная промывка создается поверхностным плунжерным насосом и клапанный пульсатор повторяет его работу с частотой пульсаций плунжера насоса и подачей жидкости.

Пульсатор с резиновой камерой работает следующим образом. Промывочная жидкость нагнетается буровым насосом через бурильные трубы в переходник 1 в центральный патрубок 4, на котором закреплена резиновая оболочка 5 хомутами 6. Патрубок 4 соединен прессовой посадкой с ниппелем 7 и нижним торцом выходит в полость корпуса 8. Выходное отверстие петрубка 4 закрыто клапаном 9 с прокладкой 11 с силой, создаваемой пружиной 10. Жидкость в патрубке 4 давит через отверстие 14 на резиновую оболочку 5, растягивая ее до тех пор, пока сила давления жидкости, действующей на прокладку 11 клапана 9, не сравняется с силой сжатой пружины 10 — клапан открывается и жидкость, вытесняемая из внутренней полости оболочки 5 и нагнетаемая насосом, поступает через колонковую трубу на забой.

Действие прерывателя потока с турбиной основано на переключении потока жидкости, нагнетаемой насосом, золотником 7 с отверстием 8 попеременно направляя поток то в камеру 12, то в отверстие 10. При этом частота пульсаций потока зависит от частоты вращения золотника, приводимого во вращение турбинкой 5, а соотношение времени подачи жидкости на забой ко времени паузы (остановка подачи) зависит от соотношения углов α : β которое задается конструктивно и выбирается из соотношения от 1:4 до 1:10.

В табл. 2 приведены технические характеристики пульсаторов и прерывателя потока, полученные при стендовых исследованиях.

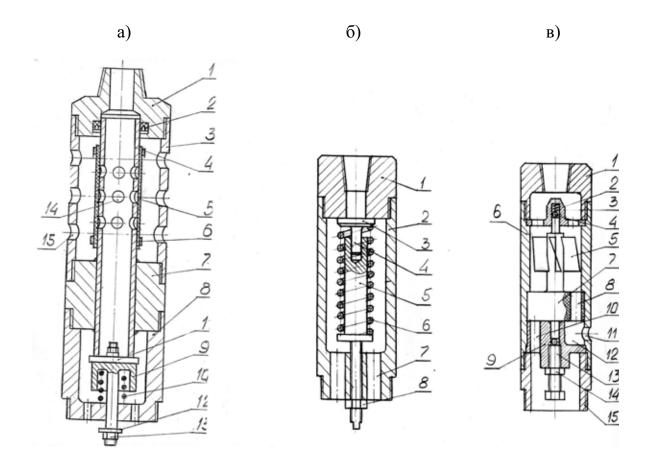


Рис. 1. Технические средства для создания импульсной промывки:

- а) Пульсатор с резиновой оболочкой: 1 переходник; 2 уплотнительное кольцо; 3 корпус; 4 центральный патрубок; 5 резиновая оболочка; 6 хомут; 7 ниппель; 8 корпус клапана; 9 клапан; 10 пружина; 11 прокладка; 12 шайба; 13 гайка; 14 отверстие в центральном патрубке; 15 отверстие в корпусе.
- б) Пульсатор клапанного типа: 1 переходник; 2 корпус; 3 прокладка; 4 клапан; 5 стержень; 6 пружина; 7 отверстия для выхода жидкости в колонковую трубу; <math>8 гайка.
- в) Прерыватель потока с турбиной: 1- переходник; 2- опора верхняя; 3- пружина; 4- шарик; 5- турбинка; 6- корпус; 7- золотник; 8- отверстие в золотнике; 9- опора нижняя; 10- отверстие в опоре; 11- отверстие в корпусе; 12- камера в опоре нижней; 13- болт регулировочный; 14- гайка; 15- ниппель

Технические характеристики технических средств создания импульсной промывки

		Ед.	Величина показателя для технического			
NºNº	Показатель		клапанный пульсатор	средства пульсатор с резиновой обо-	прерыватель потока	
1	Диаметр корпуса	MM	73	73	73	
2	Частота пульсаций	c^{-1}	0,5-2,5	0,1-0,7	0,1-3	
3	Длительность по- дачи	c	1-1,5	0,5-1,5	0,5-2	
4	Длительность пау- зы	c	2-3	3-5	3-5	
5	Общая подача на- соса	л/с	0,3-0,8	0,2-0,7	1,4-2,5	
6	Мгновенная пода- ча в импульсе	л/с	0,8-2,1	0,5-1,5	1,2-2,5	
7	Длина	MM	280	700	430	
8	Macca	ΚΓ	2,8	3,8	3,5	

СПИСОК ЛИТЕРАТУРЫ

- 1. Кожевников А.А., Вырвинский П.П. Термомеханическое разрушение горных пород при разведочном бурении с генерированием тепловой энергии трения // Обзор Техн. и технол. геол.-развед. работ; орг. производства. М.: ВИЭМС, 1985. 39 с.
- 2. Кожевников А.А. Наукові основи обертально-ударного буріння глибоких геологорозвідувальних свердловин високочастотними гідроударними машинами з відбивачами гідравлічних хвиль. Автор. дис.... докт. техн. наук, спеціальність 05.15.10 "Буріння свердловин". Дніпропетровськ, 1998. 33 с.